?
地方站
您的當(dāng)前位置:華圖網(wǎng)校 > 國家公務(wù)員 > 行測輔導(dǎo) > 數(shù)量關(guān)系 >
公務(wù)員考試行測數(shù)量關(guān)系幾何特性考查范圍
2010-05-17 16:41  華圖網(wǎng)校|http://www.htexam.net 點(diǎn)擊: 載入中...

    【華圖教育閱讀提示】幾何特性是公務(wù)員考試等公職考試《行政職業(yè)能力測驗》數(shù)量關(guān)系數(shù)學(xué)運(yùn)算中有關(guān)幾何問題的五大考查點(diǎn)之一。幾何特性到底考什么?華圖教育通過歷年真題詳細(xì)解讀了其考查范圍。

    一、公務(wù)員考試幾何特性考查范圍

    1、等比例放縮特性

    若一個幾何圖形其尺度變?yōu)樵瓉淼膍倍,則:

    1.對應(yīng)角度不發(fā)生改變;

    2.對應(yīng)長度變?yōu)樵瓉淼膍倍;

    3.對應(yīng)面積變?yōu)樵瓉淼膍2倍;

    4.對應(yīng)體積變?yōu)樵瓉淼膍3倍。

    2、幾何最值理論

    1.平面圖形中,若周長一定,越接近于圓,面積越大;

    2.平面圖形中,若面積一定,越接近于圓,周長越?。?/FONT>

    3.立體圖形中,若表面積一定,越接近于球,體積越大;

    4.立體圖形中,若體積一定,越接近于球,表面積越小。

    3、三角形三邊關(guān)系

    三角形兩邊和大于第三邊,兩邊差小于第三邊。

    二、真題解讀幾何特性的運(yùn)用

    【例1】一個正方形的邊長增加20%后,它的面積增加百分之幾?()[2002年國家公務(wù)員考試行政職業(yè)能力測驗真題A類-12、2003年山東公務(wù)員考試行政職業(yè)能力測驗真題-13]

    A. 36%    B. 40%    C. 44%    D. 48%

    [答案]C

    [華圖解析]邊長增加到原來的120%,對應(yīng)面積增加到144%(即增加了44%)。

 


    【例2】正四面體的棱長增加20%,則表面積增加()。[2009年江蘇公務(wù)員考試行政職業(yè)能力測驗真題-73]

    A. 20%    B. 15%    C. 44%    D. 40%

    [答案]C

    [華圖解析]邊長增加到原來的120%,對應(yīng)面積增加到144%(即增加了44%)。

    【例3】把圓的直徑縮短20%,則其面積將縮小多少?()[2007年浙江公務(wù)員考試行政職業(yè)能力測驗真題B類-20]

    A. 40%    B. 36%    C. 20%    D. 18%

    [答案]B

    [華圖解析]直徑縮短到原來的80%,對應(yīng)面積縮小到64%(即縮小了36%)。

    【例4】如圖,大正方形邊長為4,試求出圖形中陰影部分的面積?()[2007年黑龍江公務(wù)員考試行政職業(yè)能力測驗真題-17]

    A. 3    B. 2    C. 1.5    D. 1

    [答案]B

    [華圖解析]我們從外至內(nèi)依次將圖中三個正方形編號為1、2、3號,容易算得,2號正方形邊長是1號正方形邊長的22,其面積就應(yīng)該是1號正方形的一半。同理,3號正方形面積應(yīng)該是2號正方形的一半,而圖中陰影部分面積明顯是3號正方形的一半。由此可得:陰影面積為1號正方形的1/8,即4×4×1/8=2。

    【例5】一個邊長為80厘米的正方形,依次連接四邊中點(diǎn)得到第二個正方形,這樣繼續(xù)下去可得到第三個、第四個、第五個、第六個正方形,問第六個正方形的面積是多少平方厘米?()[2009年浙江公務(wù)員考試行政職業(yè)能力測驗真題-54]

    A. 128平方厘米    B. 162平方厘米    C. 200平方厘米    D. 242平方厘米

    [答案]C

    [華圖解析]隨便畫個簡圖易知,任意一個正方形邊長為前一個正方形邊長的2/2,其面積為上一個正方形的一半,所以第六個正方形面積應(yīng)該是第一個正方形的1/32,即:80×80÷32=200。

 


    【例6】現(xiàn)有邊長1米的一個木質(zhì)正方體,已知將其放入水里,將有0.6米浸入水中,如果將其分割成邊長0.25米的小正方體,并將所有的小正方體都放入水中,直接和水接觸的表面積總量為多少平方米?()[2007年國家公務(wù)員考試行政職業(yè)能力測驗真題-47]

    A. 3.4平方米    B. 9.6平方米

    C. 13.6平方米    D. 16平方米

    [答案]C

    [華圖解析]原立方體與水面接觸部分的面積:12+0.6×1×4=3.4平方米。每個小立方體對應(yīng)的長度為原來的14,對應(yīng)的面積(如與水接觸的面積)應(yīng)該為原來的142=116,即:3.4×116,又小立方體共有 1÷143=64個,故所有小立方體與水接觸總面積為3.4×116×64=13.6平方米。

    【例7】相同表面積的四面體、六面體、正十二面體及正二十面體其中體積最大的是()。[2008年國家公務(wù)員考試行政職業(yè)能力測驗真題-49]

    A. 四面體    B. 六面體    C. 正十二面體    D. 正二十面體

    [答案]D

    [華圖解析]由幾何最值理論,正二十面體最接近于球,所以體積最大。

    【例8】要建造一個容積為8立方米,深為2米的長方體無蓋水池,如果池底和池壁的造價分別為每平方米120元和80元,那么水池的最低造價為多少元?()[2004年上海公務(wù)員考試行政職業(yè)能力測驗真題-13]

    A. 800    B. 1120    C. 1760    D. 2240

    [答案]C

    [華圖解析]該水池的底面積為8÷2=4平方米,設(shè)底面周長為C米,則:該無蓋水池造價=2C×80+4×120=160C+480(元),因此,為了使總造價最低,應(yīng)該使底面周長盡可能短。由幾何最值理論,當(dāng)?shù)酌鏋檎叫螘r,底面周長最短,此時底面邊長為2米,底面周長為8米。水池的最低造價=160×8+480=1760(元)。

    【例9】用同樣長的鐵絲圍成三角形、圓形、正方形、菱形,其中面積最大的是()。[2004年山東公務(wù)員考試行政職業(yè)能力測驗真題-10]

    A. 正方形    B. 菱形    C. 三角形    D. 圓形

    [答案]D

    [華圖解析]由幾何最值理論可知,圓形的面積最大。

   【例10】一個等腰三角形,一邊長是30厘米,另一邊長是65厘米,則這個三角形的周長是多少厘米?()[2009年廣西公務(wù)員考試行政職業(yè)能力測驗真題-9、2004年浙江公務(wù)員考試行政職業(yè)能力測驗真題-14]

    A. 125厘米    B. 160厘米

    C. 125厘米或160厘米    D. 無法確定

    [答案]B

    [華圖解析]根據(jù)“兩邊之和必須大于第三邊”可知,如果該三角形另一邊長為30厘米,則由30+30=60<65,不能構(gòu)成三角形;如果該三角形另一邊長為65厘米,周長=30+65+65=160(厘米)。

    【例11】有一批長度分別為3、4、5、6和7厘米的細(xì)木條,它們的數(shù)量足夠多,從中適當(dāng)選取3根木條作為三角形的三條邊,可能圍成多少個不同的三角形?()[2009年浙江公務(wù)員考試行政職業(yè)能力測驗真題-45]

    A. 25個    B. 28個    C. 30個    D. 32個

    [答案]D

    [華圖解析]我們分三種情況分析:

    1. 等邊三角形:有C51=5個,并且全部能夠圍成三角形;

    2. 等腰非等邊三角形:有C51×C41=20個,其中3、3、7和3、3、6不能圍成三角形(不滿足兩邊之和大于第三邊),還剩18個;

    3. 非等腰三角形:有C53=10個,其中3、4、7不能圍成三角形,還剩9個。

    綜上,滿足條件的三角形一共有5+18+9=32個。

    (節(jié)選自 華圖名家講義《數(shù)量關(guān)系模塊寶典》,進(jìn)入華圖圖書網(wǎng)(http://book.htexam.com)了解該書)

 

發(fā)表評論 查看所有評論

表情:
匿名

最新評論

2011年公務(wù)員考試課程表
一周資訊排行
本月資訊排行
華圖網(wǎng)校命中2011國家公務(wù)員考試真題
關(guān)于我們 | 聯(lián)系我們 | 招聘信息 | 意見反饋 | 合作加盟 | 媒體關(guān)注 | 友情鏈接 | 網(wǎng)站地圖 | 網(wǎng)址導(dǎo)航
Copyright©2006-2010 htexam.net Inc. All Rights Reserved
華圖網(wǎng)校 版權(quán)所有 京ICP證090387號